MATHEMATICS

Mob.: 9470844028 9546359990

Ram Rajya More, Siwan

XIth, XIIth, TARGET IIT-JEE (MAIN + ADVANCE) & COMPETITIVE EXAM. FOR XII (PQRS)

SCALAR OR DOT PRODUCT

& Their Properties

	CONTENTS
Key Concept-I	***************************************
Exercise-I	***************************************
Exercise-II	***************************************
Exercise-III	***************************************
	Solutions of Exercise
Page	***************************************

THINGS TO REMEMBER

- If \vec{a} and \vec{b} are two non-zero vectors inclined at an angle θ , then 1.
 - (i) $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$
 - (ii) Projection of \vec{a} on $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = \vec{a} \cdot \hat{b}$
 - (iii) Projection of \vec{b} on $\vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = \vec{b} \cdot \hat{a}$
 - (iv) Projection of \vec{a} on $\vec{b} = \left\{ \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} \right\} \hat{b} = \left\{ \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \right\} \vec{b}$
 - (v) Projection vector \vec{b} on $\vec{a} = \left\{ \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} \right\} \hat{a} = \left\{ \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \right\} \vec{a}$
 - (vi) $\vec{a} \cdot \vec{b} = 0 \Rightarrow \vec{a}$ is perpendicular to \vec{b} .
 - (vii) $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
 - (viii) $\vec{a} \cdot \vec{a} = |\vec{a}|^2$
 - (ix) $m\vec{a} \cdot \vec{b} = m(\vec{a} \cdot \vec{b}) = \vec{a}$, $m\vec{b}$, for scalar m
 - (x) $m\vec{a} \cdot n\vec{b} = mn(\vec{a} \cdot \vec{b}) = mn(\vec{a} \cdot \vec{b}) = \vec{a} \cdot mn\vec{b}$ for scalars m, n
 - $(xi) |\vec{a} \pm \vec{b}| \le |\vec{a}| + |\vec{b}|$
 - $(xii)|\vec{a} \square \vec{b}| \ge |\vec{a}| |\vec{b}|$
 - (xiii) $|\vec{a} \Box + \vec{b}|^2 \ge |\vec{a}|^2 |\vec{b}|^2 \pm 2(\vec{a} \cdot \vec{b})$
 - (xiv) $(\vec{a} + \vec{b}) \cdot (\vec{a} \vec{b}) = |\vec{a}|^2 |\vec{b}|^2$
 - (xv) $\vec{a} \cdot \vec{b} > 0$ if θ is acute
 - (xvi) $\vec{a} \cdot \vec{b} < 0$ if θ is obtuse
- If \vec{a} , \vec{b} , \vec{c} are three vectors, then $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$ 2. $|\vec{a} + \vec{b} + \vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a})$
- If $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$, then $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$. 3.
- If \vec{a} and \vec{b} are two vectors inclined at an angle θ , then $\cos \theta = \frac{\vec{a}.\vec{b}}{|\vec{a}||\vec{b}|}$ 4.

5. If \vec{a} , \vec{b} , \vec{c} are non-coplanar vectors in space and \vec{r} is any vector in space, then $\vec{r} = (\vec{r} \cdot \hat{a}) \hat{a} + (\vec{r} \cdot \hat{b}) \hat{b} + (\vec{r} \cdot \hat{c}) \hat{c}$

where $\hat{a}, \hat{b}, \hat{c}$ are unit vectors in the directions of $\vec{a}, \vec{b}, \vec{c}$ respectively.

Also,
$$\vec{r} = \left\{ \frac{\vec{r} \cdot \vec{a}}{|\vec{a}|^2} \right\} \vec{a} + \left\{ \frac{\vec{r} \cdot \vec{b}}{|\vec{b}|^2} \right\} \vec{b} + \left\{ \frac{\vec{r} \cdot \vec{c}}{|\vec{b}|^2} \right\} \vec{c}$$

In particular, $\vec{r} = (\vec{r} \cdot \hat{i}) \hat{i} + (\vec{r} \cdot \hat{j}) \hat{j} + (\vec{r} \cdot \hat{k}) \hat{k}$.

EXERCISE-1

- 1. The scalar product of two vectors is commutative i.e. $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$.
- 2. For any two vectors \vec{a} and \vec{b} , we have

(i)
$$|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b}$$

(ii)
$$|\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2\vec{a} \cdot \vec{b}$$

(iii)
$$(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = |\vec{a}|^2 - |\vec{b}|^2$$

- 3. Find $\vec{a} \cdot \vec{b}$ when,
 - (i) $\vec{a} = 2\hat{i} + 2\hat{j} \hat{k}$ and $\vec{b} = 6\hat{i} 3\hat{j} + 2\hat{k}$
 - (ii) $\vec{a} = (1, 1, 2)$ and $\vec{b} = (3, 2, -1)$
- 4. Find $(\vec{a} + 3\vec{b}) \cdot (2\vec{a} \vec{b})$, if $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = 3\hat{i} + 2\hat{j} \hat{k}$.
- 5. For any vector \vec{r} , prove that $\vec{r} = (\vec{r} \cdot \hat{i})\hat{i} + (\hat{i} \cdot \hat{j})\hat{j} + (\vec{r} \cdot \hat{k})\hat{k}$.
- 6. Dot products of a vector with vectors $3\hat{i} 5\hat{k}$, $2\hat{i} + 7\hat{j} + \hat{k}$ are respectively -1, 6 and 5. Find the vector.
- 7. Find the value of λ so that the vector $\vec{a} = 2\hat{i} + \lambda \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} 2\hat{j} + 3\hat{k}$ are perpendicular to each other.
- 8. Find the value of p for which the vector $\vec{a} = 3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\vec{b} = \hat{i} + p\hat{j} + 3\hat{k}$ are
 - (i) perpendicular
 - (ii) Parallel.
- 9. Find the angle between two vector \vec{a} and \vec{b} having the same length $\sqrt{2}$ and their sealar product is -1.
- 10. Find the angle between the vectors $5\hat{i} + 3\hat{j} + 4\hat{k}$ and $6\hat{i} 8\hat{j} \hat{k}$.

By: Dir. Firoz Ahmad

- If $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} + 5\hat{j}$, $3\hat{i} + 2\hat{j} 3\hat{k}$ and $\hat{i} 6\hat{j} \hat{k}$ respectively are the position vectors of pointing A, B, C and D, then find the angle between the straight lines AB and CD. Deduce that AB and CD are collinear.
- Find the projection of the vector $7\hat{i} + \hat{j} 4\hat{k}$ on $2\hat{i} + 6\hat{j} + 3\hat{k}$. 12.
- Show that the projection vector of \vec{a} on \vec{b} ($\neq \vec{0}$) (component of \vec{a} along \vec{b}) is $\left(\frac{\vec{a}.\vec{b}}{|\vec{b}|}\right)\vec{b}$. 13.
- Show that the projection vector of \vec{b} on $\vec{a} \neq 0$ is $\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2}\right)^{\vec{a}}$.
- 15. For any two vectors \vec{a} and \vec{b} , prove that:

(i)
$$|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b}$$

(ii)
$$|\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2\vec{a} \cdot \vec{b}$$

(iii)
$$|\vec{a} + \vec{b}|^2 + |\vec{a} - \vec{b}|^2 = 2(|\vec{a}|^2 + |\vec{b}|^2)$$

Interpret the result geometrically.:

(iv)
$$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}| \Rightarrow \vec{a} \perp \vec{b}$$

Interpret the result geometrically. :

(v)
$$|\vec{a} + \vec{b}| = |\vec{a}| + |\vec{b}| \Rightarrow \vec{a}$$
 is parallel to \vec{b}

(vi)
$$|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 \Rightarrow \vec{a}, \vec{b}$$
 are orthogonal.

- For any two vectors \vec{a} and \vec{b} , prove that $|\vec{a} + \vec{b}| \le |\vec{a}| + |\vec{b}|$
- Prove Cauchy-Schawarz inequality $(\vec{a} \cdot \vec{b})^2 \le |\vec{a}|^2 |\vec{b}|^2$ 17.
- If two vectors \vec{a} and \vec{b} are such that $|\vec{a}| = 2$, $|\vec{b}| = 1$ and $\vec{a} \cdot \vec{b} = 1$, find $(3\vec{a} 5\vec{b}) \cdot (3\vec{a} + 7\vec{b})$.
- Find $|\vec{x}|$, if for a unit vector \vec{a} , $(\vec{x}-\vec{a}).(\vec{x}+\vec{a}) = 15$. 19.
- The scalar product of the vector $\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$ with a unit vector along the sum of the vectors $2\hat{\mathbf{i}} + 4\hat{\mathbf{j}} -$ 20. $5\,\hat{k}$ and $\lambda\,\hat{i}+2\,\hat{j}+3\,\hat{k}$ is equal to 1. Find the value of λ .
- If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, $|\vec{a}| = 3$, $|\vec{b}| = 5$ and $|\vec{c}| = 7$, find the angle between \vec{a} and \vec{b} .
- If $\vec{a} = 5\hat{i} \hat{j} 3\hat{k}$, and $\vec{b} = \hat{i} + 3\hat{j} 5\hat{k}$, then show that the vectors $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ are prependicular.
- Two vector \vec{a} and \vec{b} , prove that the vector $|\vec{a}| |\vec{b} + |\vec{b}| |\vec{a}|$ is orthogonal to the vector $|\vec{a}| |\vec{b} |\vec{b}| |\vec{a}|$.
- Show that the vectors $2\hat{\mathbf{i}} \hat{\mathbf{j}} + \hat{\mathbf{k}}$, $\hat{\mathbf{i}} 3\hat{\mathbf{j}} 5\hat{\mathbf{k}}$, $3\hat{\mathbf{i}} 4\hat{\mathbf{j}} 4\hat{\mathbf{k}}$ form the sides of a right angled triangle.

- Find the value of x for which the angle between the vectors $\vec{a} = 2x^2 \hat{i} + 4x \hat{j} + \hat{k}$ and $\vec{b} = 7\hat{i} 2\hat{j} + x\hat{k}$ 25. is obtuse.
- Find the value of a for which the vectors $\vec{a} = (c \log_2 x)\hat{i} 6\hat{j} + 3\hat{k}$ and $\vec{b} = (\log_2 x)\hat{i} + 2\hat{j} + (2c \log_2 x)\hat{i}$ x) \hat{k} make an abtuse angle for any $x \in (0, \infty)$.
- If \vec{a} , \vec{b} are two vectors such that $|\vec{a} + \vec{b}| = |\vec{a}|$, then prove that $2\vec{a} + \vec{b}$ is prependicular to \vec{b} .
- If \vec{a} , \vec{b} , \vec{c} are three mutually prependicular vectors of equal magnitude, prove that $\vec{a} + \vec{b} + \vec{c}$ is equally inclined with vectors \vec{a} , \vec{b} and \vec{c} .
- Let \vec{a} , \vec{b} , \vec{c} be three vectors of magnitudes 3, 4 and 5 respectively. If each one is perpendicular to the sum of the other two vectors, prove that $|\vec{a} + \vec{b} + \vec{c}| = 5\sqrt{2}$.
- If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, find the value of $\vec{a} \cdot \vec{b} \cdot \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$.
- Three vectors \vec{a} , \vec{b} and \vec{c} satisfy the condition $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. Evaluate the quantity $\mu \vec{a} \cdot \vec{b} \cdot \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$, if $|\vec{a}| = 1$, $|\vec{b}| = 4$ and $|\vec{c}| = 2$.
- Dot product of a vector with $\hat{\mathbf{i}} + \hat{\mathbf{j}} 3\,\hat{\mathbf{k}}$, $\hat{\mathbf{i}} + 3\,\hat{\mathbf{j}} 2\,\hat{\mathbf{k}}$ and $2\,\hat{\mathbf{i}} + \hat{\mathbf{j}} + 4\,\hat{\mathbf{k}}$ are C, 5 and 8 respectively. Find the vector.
- If \vec{a} and \vec{b} are unit vectors inclined at an angle θ , then prove that

(i)
$$\cos \frac{\theta}{2} = \frac{1}{2} |\hat{a} + \hat{b}|$$

(ii)
$$\tan \frac{\theta}{2} = \frac{|\hat{\mathbf{a}} - \hat{\mathbf{b}}|}{|\hat{\mathbf{a}} + \hat{\mathbf{b}}|}$$

- If \vec{a} , \vec{b} , \vec{c} are three mutually perpendicular unit vectors, then prove that $|\vec{a} + \vec{b} + \vec{c}| = \sqrt{3}$.
- Show that the vectors $\vec{a} = \frac{1}{7} (2\hat{i} + 3\hat{j} + 6\hat{k}), \ \vec{b} = \frac{1}{7} (3\hat{i} 6\hat{j} + 2\hat{k}), \ \vec{c} = \frac{1}{7} (6\hat{i} + 2\hat{j} + 3\hat{k})$ are mutually 35. perpendicular unit vectors.
- If $|\vec{a}| = a$ and $|\vec{b}| = b$, prove that $\left(\frac{\vec{a}}{a_2} \frac{\vec{b}}{b_2}\right) = \left(\frac{\vec{a} \vec{b}}{ab}\right)$.
- Show that the vectors $\vec{a} = 3\hat{i} 2\hat{j} + \hat{k}$, $\vec{b} = \hat{i} 3\hat{j} + 5\hat{k}$, $\vec{c} = 2\hat{i} + \hat{j} 4\hat{k}$ form a right angled triangle.
- If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, show that the angle θ between the vectors \vec{b} and \vec{c} is given by 38.

$$\cos \theta = \frac{|\vec{a}|^2 - |\vec{b}|^2 - |\vec{c}|^2}{2|\vec{b}||\vec{c}|}.$$

By: Dir. Firoz Ahmad

- 39. Let \vec{u} , \vec{v} and \vec{w} be vector such $\vec{u} + \vec{v} + \vec{w} = \vec{0}$. If $|\vec{u}| = 3$, $|\vec{v}| = 4$ and $|\vec{w}| = 5$, then find $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} + \vec{\mathbf{v}} \cdot \vec{\mathbf{w}} + \vec{\mathbf{w}} \cdot \vec{\mathbf{u}}$
- Show that the points whose position vectors are $\vec{a} = 4\hat{i} 3\hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} 4\hat{j} + 5\hat{k}$, $\vec{c} = \hat{i} \hat{j}$ form a right triangle.
- 41. Evaluate: $(3\vec{a} - 5\vec{b}) \cdot (2\vec{a} + \vec{b})$
- If \vec{a} is a unit vector, then find $|\vec{x}|$ in each of the following:
 - (i) $(\vec{x} \vec{a}) \cdot (\vec{x} + \vec{a}) = 8$
 - (ii) $(\vec{x} \vec{a}) \cdot (\vec{x} + \vec{a}) = 12$
- 43. Find $|\vec{a}|$ and $|\vec{b}|$, if
 - (i) $(\vec{a} + \vec{b}) \cdot (\vec{a} \vec{b}) = 12$ and $|\vec{a}| = 2|\vec{b}|$
 - (ii) $(\vec{a} + \vec{b}) \cdot (\vec{a} \vec{b}) = 8$ and $|\vec{a}| = 8 |\vec{b}|$
 - (iii) $(\vec{a} + \vec{b}) \cdot (\vec{a} \vec{b}) = 3$ and $|\vec{a}| = 2 |\vec{b}|$
- Find the angle between two vectors \vec{a} and \vec{b} , if
 - (i) $|\vec{a}| = \sqrt{3}$, $|\vec{b}| = 2$ and $\vec{a} \cdot \vec{b} = \sqrt{6}$
 - (ii) $|\vec{a}| = 3$, $|\vec{b}| = 3$ and $\vec{a} \cdot \vec{b} = 4$
- Express the vector $\vec{a} = 5\hat{i} 2\hat{j} + 5\hat{k}$ as the sum of two vectors such that one is parallel to the vector $\vec{b} = 3\hat{i} + \hat{k}$ and other is prependicular to \vec{b} .
- If \vec{a} and \vec{b} are two vectors of the same magnitude inclined at an angle of 30° such that $\vec{a} \cdot \vec{b} = 3$, find $|\vec{a}|$, $|\vec{b}|$.
- Decompose the vector $6\hat{i}-3\hat{j}-6\hat{k}$ into vectors which are parallel and prependicular to the vector $\hat{i} + \hat{i} + \hat{k}$.
- If $\vec{a} \cdot \vec{a} = 0$ and $\vec{a} \cdot \vec{b} = 0$, what can you conclude about the vector \vec{b} ?
- A unit vector \vec{a} makes angles $\frac{\pi}{2}$ and $\frac{\pi}{3}$ with \hat{i} and \hat{j} respectively and an acute angle θ with \hat{k} . Find the angle θ and component of \vec{a} .
- If $\vec{a} = 5\hat{i} \hat{j} 3\hat{k}$ and $\vec{b} = \hat{i} + 3\hat{j} 5\hat{k}$, then show that the vectors $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ are orthogonal.
- Find the projection of $\vec{b} + \vec{c}$ on \vec{a} , where $\vec{a} = 2\hat{i} 2\hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} 2\hat{k}$ and $\vec{c} = 2\hat{i} \hat{i} + 4\hat{k}$.
- Find the magnitude of two vectors \vec{a} and \vec{b} , having the same magnitude and such that the angle between them is 60° and their scalar product is 1/2.

- 53. If $\vec{a} = 2\hat{i} 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j}$ are such that $\vec{a} + \lambda \vec{b}$ is perpendicular to c, then find the value of λ .
- If either $\vec{a} = \vec{0}$ or $\vec{b} = \vec{0}$, then $\vec{a} \cdot \vec{b} = 0$. But the converse need not be true. Justify your answer with an example.

EXERCISE-2

- What is the angle between vector \vec{a} and \vec{b} with magnitudes 2 and $\sqrt{3}$ respectively? Given 1. $\vec{a} \cdot \vec{b} = \sqrt{3}$.
- If \vec{a} and \vec{b} are two vectors such that $\vec{a} \cdot \vec{b} = 6$, $|\vec{a}| = 3$ and $|\vec{b}| = 4$. Write the projection of \vec{a} on \vec{b} . 2.
- If the vectors $3\hat{i} 2\hat{j} 4\hat{k}$ and $18\hat{i} 12\hat{j} m\hat{k}$ are parallel, find the value of m. 3.
- For any two vector \vec{a} and \vec{b} write when $|\vec{a} + \vec{b}| = |\vec{a} \vec{b}|$ holds. 4.
- If \vec{a} , \vec{b} are unit vectors such that $\hat{a} + \hat{b}$ is a unit vector, write the value of $|\hat{a} \hat{b}|$. 5.
- If $|\vec{a}| = 2$, $|\vec{b}| = 5$ and $\vec{a} \cdot \vec{b} = 2$, find $|\vec{a} \vec{b}|$. 6.
- For any two non-zero vector, write the value of $\frac{|\vec{a} + \vec{b}|^2 + |\vec{a} \vec{b}|^2}{|\vec{a}|^2 + |\vec{b}|^2}$. 7.
- Find the value of $\theta \in (\theta, \pi/2)$ for which vectors $\vec{a} = (\sin \theta) \hat{i} + (\cos \theta) \hat{j}$ and $\vec{b} = \hat{i} \sqrt{3} \hat{j} + 2\hat{k}$ are 8. perpendicular.
- If \vec{a} and \vec{b} are matually perpendicular unit vector, write the value of $|\vec{a} + \vec{b}|$. 9.
- Find the angle between the vectors $\vec{a} = \hat{i} \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + \hat{j} \hat{k}$. 10.
- For what value of λ are the vectors $\vec{a} = 2\hat{i} + \lambda\hat{j} + \hat{k}$ and $\vec{b} = \hat{i} 2\hat{j} + 3\hat{k}$ perpendicular to each other? 11.
- Find the projection of \vec{a} on \vec{b} if $\vec{a} \cdot \vec{b} = 8$ and $\vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$.
- Write the value of p for which $\vec{a} = 3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\vec{b} = \hat{i} + p\hat{j} + 3\hat{k}$ are parallel vectors. 13.
- Find the value of λ if the vectors $2\hat{i} + \lambda \hat{j} + 3\hat{k}$ and $3\hat{i} + 2\hat{j} 4\hat{k}$ are perpendicular to each other. 14.
- If $|\vec{a}| = 2$, $|\vec{b}| = 3$ and $\vec{a} \cdot \vec{b} = 3$, find the projection of \vec{b} on \vec{a} . 15.

EXERCISE-3

- Let \vec{a} and \vec{b} be two vectors and α be the angle between them, then $\vec{a} + \vec{b}$ is a unit vector, if 1.
 - (a) $\alpha = \frac{\pi}{4}$
- (b) $\alpha = \frac{\pi}{2}$
- (c) $\alpha = \frac{2\pi}{3}$
- (d) $\alpha = \frac{\pi}{2}$

2. The vector component of \vec{b} prependicular to \vec{a} is

By: Dir. Firoz Ahmad

- (a) $(\vec{b} \cdot \vec{c})\vec{a}$
- (b) $\frac{\vec{a} \times (\vec{b} \times \vec{a})}{|\vec{a}|^2}$
- (c) $\vec{a} \times (\vec{b} \times \vec{a})$
- (d) none of these
- 3. If \vec{a} , \vec{b} , \vec{c} are any three mutually perpendicular vectors of equal magnitude a, then $|\vec{a} + \vec{b} + \vec{c}|$ is equal to
 - (a) a

- (b) $\sqrt{2}$ a
- (c) $\sqrt{3}$ a
- (d) none of these
- 4. The projection of the vector $\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$ along the vector of $\hat{\mathbf{j}}$ is
 - (a) 1

(b) 0

(c) 2

(d) -1

- (e) -2
- 5. If \vec{a} and \vec{b} are unit vectors, then the greatest value of $\sqrt{3} |\vec{a} + \vec{b}| + |\vec{a} \vec{b}|$ is
 - (a) 2

- (b) $2\sqrt{2}$
- (c) 4

(d) none of these

- 6. The orthogonal projection of \vec{a} on \vec{b} is
 - (a) $\frac{(\vec{a}.\vec{b})\vec{a}}{|\vec{a}|^2}$
- (b) $\frac{\left(\vec{a}.\vec{b}\right)\vec{b}}{\left|\vec{b}\right|^2}$
- (c) $\frac{\overline{a}}{|\overline{a}|^2}$
- (d) $\frac{\vec{b}}{|\vec{a}|^2}$