MATHEMATICS Mob.: 9470844028 9546359990 Ram Rajya More, Siwan ## XIth, XIIth, TARGET IIT-JEE (MAIN + ADVANCE) & COMPETITIVE EXAM. FOR XII (PQRS) ## SCALAR OR DOT PRODUCT & Their Properties | | CONTENTS | |---------------|---| | Key Concept-I | *************************************** | | Exercise-I | *************************************** | | Exercise-II | *************************************** | | Exercise-III | *************************************** | | | Solutions of Exercise | | Page | *************************************** | #### THINGS TO REMEMBER - If \vec{a} and \vec{b} are two non-zero vectors inclined at an angle θ , then 1. - (i) $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$ - (ii) Projection of \vec{a} on $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = \vec{a} \cdot \hat{b}$ - (iii) Projection of \vec{b} on $\vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = \vec{b} \cdot \hat{a}$ - (iv) Projection of \vec{a} on $\vec{b} = \left\{ \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} \right\} \hat{b} = \left\{ \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \right\} \vec{b}$ - (v) Projection vector \vec{b} on $\vec{a} = \left\{ \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} \right\} \hat{a} = \left\{ \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \right\} \vec{a}$ - (vi) $\vec{a} \cdot \vec{b} = 0 \Rightarrow \vec{a}$ is perpendicular to \vec{b} . - (vii) $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ - (viii) $\vec{a} \cdot \vec{a} = |\vec{a}|^2$ - (ix) $m\vec{a} \cdot \vec{b} = m(\vec{a} \cdot \vec{b}) = \vec{a}$, $m\vec{b}$, for scalar m - (x) $m\vec{a} \cdot n\vec{b} = mn(\vec{a} \cdot \vec{b}) = mn(\vec{a} \cdot \vec{b}) = \vec{a} \cdot mn\vec{b}$ for scalars m, n - $(xi) |\vec{a} \pm \vec{b}| \le |\vec{a}| + |\vec{b}|$ - $(xii)|\vec{a} \square \vec{b}| \ge |\vec{a}| |\vec{b}|$ - (xiii) $|\vec{a} \Box + \vec{b}|^2 \ge |\vec{a}|^2 |\vec{b}|^2 \pm 2(\vec{a} \cdot \vec{b})$ - (xiv) $(\vec{a} + \vec{b}) \cdot (\vec{a} \vec{b}) = |\vec{a}|^2 |\vec{b}|^2$ - (xv) $\vec{a} \cdot \vec{b} > 0$ if θ is acute - (xvi) $\vec{a} \cdot \vec{b} < 0$ if θ is obtuse - If \vec{a} , \vec{b} , \vec{c} are three vectors, then $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$ 2. $|\vec{a} + \vec{b} + \vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a})$ - If $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$, then $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$. 3. - If \vec{a} and \vec{b} are two vectors inclined at an angle θ , then $\cos \theta = \frac{\vec{a}.\vec{b}}{|\vec{a}||\vec{b}|}$ 4. 5. If \vec{a} , \vec{b} , \vec{c} are non-coplanar vectors in space and \vec{r} is any vector in space, then $\vec{r} = (\vec{r} \cdot \hat{a}) \hat{a} + (\vec{r} \cdot \hat{b}) \hat{b} + (\vec{r} \cdot \hat{c}) \hat{c}$ where $\hat{a}, \hat{b}, \hat{c}$ are unit vectors in the directions of $\vec{a}, \vec{b}, \vec{c}$ respectively. Also, $$\vec{r} = \left\{ \frac{\vec{r} \cdot \vec{a}}{|\vec{a}|^2} \right\} \vec{a} + \left\{ \frac{\vec{r} \cdot \vec{b}}{|\vec{b}|^2} \right\} \vec{b} + \left\{ \frac{\vec{r} \cdot \vec{c}}{|\vec{b}|^2} \right\} \vec{c}$$ In particular, $\vec{r} = (\vec{r} \cdot \hat{i}) \hat{i} + (\vec{r} \cdot \hat{j}) \hat{j} + (\vec{r} \cdot \hat{k}) \hat{k}$. #### **EXERCISE-1** - 1. The scalar product of two vectors is commutative i.e. $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$. - 2. For any two vectors \vec{a} and \vec{b} , we have (i) $$|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b}$$ (ii) $$|\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2\vec{a} \cdot \vec{b}$$ (iii) $$(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = |\vec{a}|^2 - |\vec{b}|^2$$ - 3. Find $\vec{a} \cdot \vec{b}$ when, - (i) $\vec{a} = 2\hat{i} + 2\hat{j} \hat{k}$ and $\vec{b} = 6\hat{i} 3\hat{j} + 2\hat{k}$ - (ii) $\vec{a} = (1, 1, 2)$ and $\vec{b} = (3, 2, -1)$ - 4. Find $(\vec{a} + 3\vec{b}) \cdot (2\vec{a} \vec{b})$, if $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = 3\hat{i} + 2\hat{j} \hat{k}$. - 5. For any vector \vec{r} , prove that $\vec{r} = (\vec{r} \cdot \hat{i})\hat{i} + (\hat{i} \cdot \hat{j})\hat{j} + (\vec{r} \cdot \hat{k})\hat{k}$. - 6. Dot products of a vector with vectors $3\hat{i} 5\hat{k}$, $2\hat{i} + 7\hat{j} + \hat{k}$ are respectively -1, 6 and 5. Find the vector. - 7. Find the value of λ so that the vector $\vec{a} = 2\hat{i} + \lambda \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} 2\hat{j} + 3\hat{k}$ are perpendicular to each other. - 8. Find the value of p for which the vector $\vec{a} = 3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\vec{b} = \hat{i} + p\hat{j} + 3\hat{k}$ are - (i) perpendicular - (ii) Parallel. - 9. Find the angle between two vector \vec{a} and \vec{b} having the same length $\sqrt{2}$ and their sealar product is -1. - 10. Find the angle between the vectors $5\hat{i} + 3\hat{j} + 4\hat{k}$ and $6\hat{i} 8\hat{j} \hat{k}$. ## By: Dir. Firoz Ahmad - If $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} + 5\hat{j}$, $3\hat{i} + 2\hat{j} 3\hat{k}$ and $\hat{i} 6\hat{j} \hat{k}$ respectively are the position vectors of pointing A, B, C and D, then find the angle between the straight lines AB and CD. Deduce that AB and CD are collinear. - Find the projection of the vector $7\hat{i} + \hat{j} 4\hat{k}$ on $2\hat{i} + 6\hat{j} + 3\hat{k}$. 12. - Show that the projection vector of \vec{a} on \vec{b} ($\neq \vec{0}$) (component of \vec{a} along \vec{b}) is $\left(\frac{\vec{a}.\vec{b}}{|\vec{b}|}\right)\vec{b}$. 13. - Show that the projection vector of \vec{b} on $\vec{a} \neq 0$ is $\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2}\right)^{\vec{a}}$. - 15. For any two vectors \vec{a} and \vec{b} , prove that: (i) $$|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b}$$ (ii) $$|\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2\vec{a} \cdot \vec{b}$$ (iii) $$|\vec{a} + \vec{b}|^2 + |\vec{a} - \vec{b}|^2 = 2(|\vec{a}|^2 + |\vec{b}|^2)$$ Interpret the result geometrically.: (iv) $$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}| \Rightarrow \vec{a} \perp \vec{b}$$ Interpret the result geometrically. : (v) $$|\vec{a} + \vec{b}| = |\vec{a}| + |\vec{b}| \Rightarrow \vec{a}$$ is parallel to \vec{b} (vi) $$|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 \Rightarrow \vec{a}, \vec{b}$$ are orthogonal. - For any two vectors \vec{a} and \vec{b} , prove that $|\vec{a} + \vec{b}| \le |\vec{a}| + |\vec{b}|$ - Prove Cauchy-Schawarz inequality $(\vec{a} \cdot \vec{b})^2 \le |\vec{a}|^2 |\vec{b}|^2$ 17. - If two vectors \vec{a} and \vec{b} are such that $|\vec{a}| = 2$, $|\vec{b}| = 1$ and $\vec{a} \cdot \vec{b} = 1$, find $(3\vec{a} 5\vec{b}) \cdot (3\vec{a} + 7\vec{b})$. - Find $|\vec{x}|$, if for a unit vector \vec{a} , $(\vec{x}-\vec{a}).(\vec{x}+\vec{a}) = 15$. 19. - The scalar product of the vector $\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$ with a unit vector along the sum of the vectors $2\hat{\mathbf{i}} + 4\hat{\mathbf{j}} -$ 20. $5\,\hat{k}$ and $\lambda\,\hat{i}+2\,\hat{j}+3\,\hat{k}$ is equal to 1. Find the value of λ . - If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, $|\vec{a}| = 3$, $|\vec{b}| = 5$ and $|\vec{c}| = 7$, find the angle between \vec{a} and \vec{b} . - If $\vec{a} = 5\hat{i} \hat{j} 3\hat{k}$, and $\vec{b} = \hat{i} + 3\hat{j} 5\hat{k}$, then show that the vectors $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ are prependicular. - Two vector \vec{a} and \vec{b} , prove that the vector $|\vec{a}| |\vec{b} + |\vec{b}| |\vec{a}|$ is orthogonal to the vector $|\vec{a}| |\vec{b} |\vec{b}| |\vec{a}|$. - Show that the vectors $2\hat{\mathbf{i}} \hat{\mathbf{j}} + \hat{\mathbf{k}}$, $\hat{\mathbf{i}} 3\hat{\mathbf{j}} 5\hat{\mathbf{k}}$, $3\hat{\mathbf{i}} 4\hat{\mathbf{j}} 4\hat{\mathbf{k}}$ form the sides of a right angled triangle. - Find the value of x for which the angle between the vectors $\vec{a} = 2x^2 \hat{i} + 4x \hat{j} + \hat{k}$ and $\vec{b} = 7\hat{i} 2\hat{j} + x\hat{k}$ 25. is obtuse. - Find the value of a for which the vectors $\vec{a} = (c \log_2 x)\hat{i} 6\hat{j} + 3\hat{k}$ and $\vec{b} = (\log_2 x)\hat{i} + 2\hat{j} + (2c \log_2 x)\hat{i}$ x) \hat{k} make an abtuse angle for any $x \in (0, \infty)$. - If \vec{a} , \vec{b} are two vectors such that $|\vec{a} + \vec{b}| = |\vec{a}|$, then prove that $2\vec{a} + \vec{b}$ is prependicular to \vec{b} . - If \vec{a} , \vec{b} , \vec{c} are three mutually prependicular vectors of equal magnitude, prove that $\vec{a} + \vec{b} + \vec{c}$ is equally inclined with vectors \vec{a} , \vec{b} and \vec{c} . - Let \vec{a} , \vec{b} , \vec{c} be three vectors of magnitudes 3, 4 and 5 respectively. If each one is perpendicular to the sum of the other two vectors, prove that $|\vec{a} + \vec{b} + \vec{c}| = 5\sqrt{2}$. - If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, find the value of $\vec{a} \cdot \vec{b} \cdot \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$. - Three vectors \vec{a} , \vec{b} and \vec{c} satisfy the condition $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. Evaluate the quantity $\mu \vec{a} \cdot \vec{b} \cdot \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$, if $|\vec{a}| = 1$, $|\vec{b}| = 4$ and $|\vec{c}| = 2$. - Dot product of a vector with $\hat{\mathbf{i}} + \hat{\mathbf{j}} 3\,\hat{\mathbf{k}}$, $\hat{\mathbf{i}} + 3\,\hat{\mathbf{j}} 2\,\hat{\mathbf{k}}$ and $2\,\hat{\mathbf{i}} + \hat{\mathbf{j}} + 4\,\hat{\mathbf{k}}$ are C, 5 and 8 respectively. Find the vector. - If \vec{a} and \vec{b} are unit vectors inclined at an angle θ , then prove that (i) $$\cos \frac{\theta}{2} = \frac{1}{2} |\hat{a} + \hat{b}|$$ (ii) $$\tan \frac{\theta}{2} = \frac{|\hat{\mathbf{a}} - \hat{\mathbf{b}}|}{|\hat{\mathbf{a}} + \hat{\mathbf{b}}|}$$ - If \vec{a} , \vec{b} , \vec{c} are three mutually perpendicular unit vectors, then prove that $|\vec{a} + \vec{b} + \vec{c}| = \sqrt{3}$. - Show that the vectors $\vec{a} = \frac{1}{7} (2\hat{i} + 3\hat{j} + 6\hat{k}), \ \vec{b} = \frac{1}{7} (3\hat{i} 6\hat{j} + 2\hat{k}), \ \vec{c} = \frac{1}{7} (6\hat{i} + 2\hat{j} + 3\hat{k})$ are mutually 35. perpendicular unit vectors. - If $|\vec{a}| = a$ and $|\vec{b}| = b$, prove that $\left(\frac{\vec{a}}{a_2} \frac{\vec{b}}{b_2}\right) = \left(\frac{\vec{a} \vec{b}}{ab}\right)$. - Show that the vectors $\vec{a} = 3\hat{i} 2\hat{j} + \hat{k}$, $\vec{b} = \hat{i} 3\hat{j} + 5\hat{k}$, $\vec{c} = 2\hat{i} + \hat{j} 4\hat{k}$ form a right angled triangle. - If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, show that the angle θ between the vectors \vec{b} and \vec{c} is given by 38. $$\cos \theta = \frac{|\vec{a}|^2 - |\vec{b}|^2 - |\vec{c}|^2}{2|\vec{b}||\vec{c}|}.$$ ## By: Dir. Firoz Ahmad - 39. Let \vec{u} , \vec{v} and \vec{w} be vector such $\vec{u} + \vec{v} + \vec{w} = \vec{0}$. If $|\vec{u}| = 3$, $|\vec{v}| = 4$ and $|\vec{w}| = 5$, then find $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} + \vec{\mathbf{v}} \cdot \vec{\mathbf{w}} + \vec{\mathbf{w}} \cdot \vec{\mathbf{u}}$ - Show that the points whose position vectors are $\vec{a} = 4\hat{i} 3\hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} 4\hat{j} + 5\hat{k}$, $\vec{c} = \hat{i} \hat{j}$ form a right triangle. - 41. Evaluate: $(3\vec{a} - 5\vec{b}) \cdot (2\vec{a} + \vec{b})$ - If \vec{a} is a unit vector, then find $|\vec{x}|$ in each of the following: - (i) $(\vec{x} \vec{a}) \cdot (\vec{x} + \vec{a}) = 8$ - (ii) $(\vec{x} \vec{a}) \cdot (\vec{x} + \vec{a}) = 12$ - 43. Find $|\vec{a}|$ and $|\vec{b}|$, if - (i) $(\vec{a} + \vec{b}) \cdot (\vec{a} \vec{b}) = 12$ and $|\vec{a}| = 2|\vec{b}|$ - (ii) $(\vec{a} + \vec{b}) \cdot (\vec{a} \vec{b}) = 8$ and $|\vec{a}| = 8 |\vec{b}|$ - (iii) $(\vec{a} + \vec{b}) \cdot (\vec{a} \vec{b}) = 3$ and $|\vec{a}| = 2 |\vec{b}|$ - Find the angle between two vectors \vec{a} and \vec{b} , if - (i) $|\vec{a}| = \sqrt{3}$, $|\vec{b}| = 2$ and $\vec{a} \cdot \vec{b} = \sqrt{6}$ - (ii) $|\vec{a}| = 3$, $|\vec{b}| = 3$ and $\vec{a} \cdot \vec{b} = 4$ - Express the vector $\vec{a} = 5\hat{i} 2\hat{j} + 5\hat{k}$ as the sum of two vectors such that one is parallel to the vector $\vec{b} = 3\hat{i} + \hat{k}$ and other is prependicular to \vec{b} . - If \vec{a} and \vec{b} are two vectors of the same magnitude inclined at an angle of 30° such that $\vec{a} \cdot \vec{b} = 3$, find $|\vec{a}|$, $|\vec{b}|$. - Decompose the vector $6\hat{i}-3\hat{j}-6\hat{k}$ into vectors which are parallel and prependicular to the vector $\hat{i} + \hat{i} + \hat{k}$. - If $\vec{a} \cdot \vec{a} = 0$ and $\vec{a} \cdot \vec{b} = 0$, what can you conclude about the vector \vec{b} ? - A unit vector \vec{a} makes angles $\frac{\pi}{2}$ and $\frac{\pi}{3}$ with \hat{i} and \hat{j} respectively and an acute angle θ with \hat{k} . Find the angle θ and component of \vec{a} . - If $\vec{a} = 5\hat{i} \hat{j} 3\hat{k}$ and $\vec{b} = \hat{i} + 3\hat{j} 5\hat{k}$, then show that the vectors $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ are orthogonal. - Find the projection of $\vec{b} + \vec{c}$ on \vec{a} , where $\vec{a} = 2\hat{i} 2\hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} 2\hat{k}$ and $\vec{c} = 2\hat{i} \hat{i} + 4\hat{k}$. - Find the magnitude of two vectors \vec{a} and \vec{b} , having the same magnitude and such that the angle between them is 60° and their scalar product is 1/2. - 53. If $\vec{a} = 2\hat{i} 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j}$ are such that $\vec{a} + \lambda \vec{b}$ is perpendicular to c, then find the value of λ . - If either $\vec{a} = \vec{0}$ or $\vec{b} = \vec{0}$, then $\vec{a} \cdot \vec{b} = 0$. But the converse need not be true. Justify your answer with an example. #### **EXERCISE-2** - What is the angle between vector \vec{a} and \vec{b} with magnitudes 2 and $\sqrt{3}$ respectively? Given 1. $\vec{a} \cdot \vec{b} = \sqrt{3}$. - If \vec{a} and \vec{b} are two vectors such that $\vec{a} \cdot \vec{b} = 6$, $|\vec{a}| = 3$ and $|\vec{b}| = 4$. Write the projection of \vec{a} on \vec{b} . 2. - If the vectors $3\hat{i} 2\hat{j} 4\hat{k}$ and $18\hat{i} 12\hat{j} m\hat{k}$ are parallel, find the value of m. 3. - For any two vector \vec{a} and \vec{b} write when $|\vec{a} + \vec{b}| = |\vec{a} \vec{b}|$ holds. 4. - If \vec{a} , \vec{b} are unit vectors such that $\hat{a} + \hat{b}$ is a unit vector, write the value of $|\hat{a} \hat{b}|$. 5. - If $|\vec{a}| = 2$, $|\vec{b}| = 5$ and $\vec{a} \cdot \vec{b} = 2$, find $|\vec{a} \vec{b}|$. 6. - For any two non-zero vector, write the value of $\frac{|\vec{a} + \vec{b}|^2 + |\vec{a} \vec{b}|^2}{|\vec{a}|^2 + |\vec{b}|^2}$. 7. - Find the value of $\theta \in (\theta, \pi/2)$ for which vectors $\vec{a} = (\sin \theta) \hat{i} + (\cos \theta) \hat{j}$ and $\vec{b} = \hat{i} \sqrt{3} \hat{j} + 2\hat{k}$ are 8. perpendicular. - If \vec{a} and \vec{b} are matually perpendicular unit vector, write the value of $|\vec{a} + \vec{b}|$. 9. - Find the angle between the vectors $\vec{a} = \hat{i} \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + \hat{j} \hat{k}$. 10. - For what value of λ are the vectors $\vec{a} = 2\hat{i} + \lambda\hat{j} + \hat{k}$ and $\vec{b} = \hat{i} 2\hat{j} + 3\hat{k}$ perpendicular to each other? 11. - Find the projection of \vec{a} on \vec{b} if $\vec{a} \cdot \vec{b} = 8$ and $\vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$. - Write the value of p for which $\vec{a} = 3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\vec{b} = \hat{i} + p\hat{j} + 3\hat{k}$ are parallel vectors. 13. - Find the value of λ if the vectors $2\hat{i} + \lambda \hat{j} + 3\hat{k}$ and $3\hat{i} + 2\hat{j} 4\hat{k}$ are perpendicular to each other. 14. - If $|\vec{a}| = 2$, $|\vec{b}| = 3$ and $\vec{a} \cdot \vec{b} = 3$, find the projection of \vec{b} on \vec{a} . 15. ### **EXERCISE-3** - Let \vec{a} and \vec{b} be two vectors and α be the angle between them, then $\vec{a} + \vec{b}$ is a unit vector, if 1. - (a) $\alpha = \frac{\pi}{4}$ - (b) $\alpha = \frac{\pi}{2}$ - (c) $\alpha = \frac{2\pi}{3}$ - (d) $\alpha = \frac{\pi}{2}$ 2. The vector component of \vec{b} prependicular to \vec{a} is ## By: Dir. Firoz Ahmad - (a) $(\vec{b} \cdot \vec{c})\vec{a}$ - (b) $\frac{\vec{a} \times (\vec{b} \times \vec{a})}{|\vec{a}|^2}$ - (c) $\vec{a} \times (\vec{b} \times \vec{a})$ - (d) none of these - 3. If \vec{a} , \vec{b} , \vec{c} are any three mutually perpendicular vectors of equal magnitude a, then $|\vec{a} + \vec{b} + \vec{c}|$ is equal to - (a) a - (b) $\sqrt{2}$ a - (c) $\sqrt{3}$ a - (d) none of these - 4. The projection of the vector $\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$ along the vector of $\hat{\mathbf{j}}$ is - (a) 1 (b) 0 (c) 2 (d) -1 - (e) -2 - 5. If \vec{a} and \vec{b} are unit vectors, then the greatest value of $\sqrt{3} |\vec{a} + \vec{b}| + |\vec{a} \vec{b}|$ is - (a) 2 - (b) $2\sqrt{2}$ - (c) 4 (d) none of these - 6. The orthogonal projection of \vec{a} on \vec{b} is - (a) $\frac{(\vec{a}.\vec{b})\vec{a}}{|\vec{a}|^2}$ - (b) $\frac{\left(\vec{a}.\vec{b}\right)\vec{b}}{\left|\vec{b}\right|^2}$ - (c) $\frac{\overline{a}}{|\overline{a}|^2}$ - (d) $\frac{\vec{b}}{|\vec{a}|^2}$